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ON GENERALIZED SEMISYMMETRIC RIEMANNIAN MANIFOLDS

JOSEF MIKEŠ a∗ AND SERGEY E. STEPANOV b

ABSTRACT. There are several generalizations of the concept of semi-symmetric Rie-
mannian manifolds. In the present paper, we consider some special types of generalized
semi-symmetric Riemannian manifolds with positive or negative defined curvature operator
or sectional curvature. As applications of our theory we prove some propositions about
semi-symmetric, Ricci-semi-symmetric and birecurrent Riemannian manifolds.

1. Introduction

An n-dimensional (n ≥ 3) Riemannian manifold (M,g) with the Levi-Civita connection
∇ is a semisymmetric manifold if its Riemannian curvature tensor R satisfies the following
condition

R(X ,Y )◦R = 0. (1)

Here ◦ denotes tensor derivations and X ,Y are arbitrary vector fields on the manifold M.
Semisymmetric manifolds have been investigated by E. Cartan and are the generalization

of symmetric Riemannian manifolds in the sense that the curvature tensor of any locally
symmetric Riemannian manifolds satisfies (1). However, there exist examples of semisym-
metric but not locally symmetric spaces. There are many papers where authors consider
these manifolds (see, for example, Boeckx, Kowalski, and Vanhecke 1996; Deszcz and
Hotloś 1998; Kowalczyk 2001; Lumiste 1996; Mikeš 1988, 1996; Mikeš, Hinterleitner, and
Vanzurová 2009; Sinyukov 1979; Szabo 1982).

These manifolds have been locally classified by Szabo (1982). The author proves that
for every Riemannian semi-symmetric space there exists an everywhere dense open subset
U such that, around every point of U , the space is locally isometric to a space which is the
direct product of symmetric spaces, 2-dimensional Riemannian spaces, elliptic, hyperbolic,
Euclidean and Kählerian cones, and spaces foliated by (n−2)-dimensional Euclidean spaces
(i.e. Riemannian spaces (M,g) with index of nullity ν(p) = n−2 for any p ∈ M).

The theory of Riemannian semisymmetric manifolds has been presented in the mono-
graph by Boeckx, Kowalski, and Vanhecke (1996).

In the present paper, we consider some special types of generalized semisymmetric
Riemannian manifolds with a non-degenerate curvature operator or nonzero sectional
curvature. As applications of our theory we show vanishing theorems for semisymmetric,
Ricci-semisymmetric and birecurrent Riemannian manifolds.
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2. T -semisymmetric Riemannian manifolds

There are several generalizations of the concept of semisymmetric Riemannian manifolds.
For example (see Mikeš 1980, 1988; Mikeš, Hinterleitner, and Vanzurová 2009; Mikeš
and Rachtlnek 2000, 2002), a Riemannian manifold (M,g) is called a T-semi-symmetric
manifold if (M,g) admits a tensor field T of the type (p,q) such that the following condition

R(X ,Y )◦T = 0 (2)

is true for the Riemannian curvature tensor R of (M,g), where R(X ,Y ) acts as a derivation
on T and for any vector fields X ,Y on M.

We recall that at each point x of M, the quadratic form gx induces a canonical isomor-
phism TxM → T ∗

x M and more generally, a canonical isomorphism between any spaces
T (q,p)M and T (r,h)M for r + h = p + q. These isomorphisms correspond to lowering
(resp. raising) indices in classical tensor notation. For example, we have the following
Ti1···iqk1···kp = gk1 j1 · · ·gkp jpT j1··· jp

i1···iq by local expressions T = (T j1··· jp
i1···iq ) and g = (gi j) for the

tensor T and the metric tensor g respectively. This fact and also that ∇ is natural connection
of metric g (i.e. ∇g = 0) allows us to consider only covariant tensors T . In addition, note
that g defines a positive define quadratic form on the space T (q,0)

x M of covariant tensors
of type (q,0) and consequently on any subspace of T (q,0)

x M such as the space ΛqM of
skew-symmetric and space SqM of symmetric covariant tensors of type (q,0).

On the other hand, there is a well-known point-wise orthogonal decomposition (see
Besse 1987, p. 45)

T (2,0)M = T ∗M⊗T ∗M = S2M⊕Λ
2M,

from which we obtain the following orthogonal decomposition T = ST +ΛT for any tensor
field T of type (2,0) where ST = PrS2MT and ΛT = Pr

Λ2MT are orthogonal projections on
the tensor spaces S2M and Λ2M, respectively.

Next, we note that if any Riemannian manifold (M,g) is a T -semi-symmetric manifold
with a tensor field T of the type (2,0) then (M,g) is a ST and ΛT -semi-symmetric manifold.
Moreover, the converse proposition is true.

3. Statement of the main results

3.1. Conditions for non-existence of T -semisymmetric manifold. In accordance with
above results, we consider two special types of T -semisymmetric manifolds. Firstly, it is a
T -semi-symmetric n-dimensional Riemannian manifold with a covariant skew-symmetric
tensor field of type (2,0), i.e. T ∈ Λ2M. In this case the following lemma is true.

Lemma 1. Let (M,g) be an n-dimensional (n ≥ 3) Riemannian manifold with a positive
(negative) define Riemannian curvature operator R : Λ2M → Λ2M, then (M,g) can not be
a T -semisymmetric Riemannian manifold with a nonzero covariant skew-symmetric tensor
field T ∈ S2M.

Lemma 1 implies in particular that for a Riemannian manifold of constant positive
(negative) sectional curvature, or for a conformally flat Riemannian manifold with positive
definite (negative definite) Ricci tensor, we have T = 0.
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Secondary, we consider a T -semisymmetric manifold with a covariant symmetric tensor
field of type (2,0), i.e. T ∈ S2M. In this case we will prove the following lemma.

Lemma 2. Let (M,g) be a T-semisymmetric n-dimensional (n ≥ 2) Riemannian manifold
with a covariant symmetric tensor field T ∈ S2M and {e1, . . . ,en} be an orthonormal basis
at an arbitrary point x ∈ M which consists of eigenvectors of T such that T (ei,e j) = λiδi j for
the eigenvalue λi of T and the Kronecker delta δi j. If the sectional curvature sec(ei∧e j) ̸= 0
then λi = λ j. In particular, if (M,g) has nonzero sectional curvatures at each point of
(M,g), then T = λ ·g for some smooth scalar function λ .

Next, from Lemma 1 and Lemma 2 we conclude that the following theorem holds.

Theorem 1. Let (M,g) be a T-semisymmetric n-dimensional (n ≥ 3) Riemannian manifold
with a tensor field T of the type (2,0) and a positive (negative) Riemannian curvature
operator R: Λ2M → Λ2M, then T = λ ·g for some smooth scalar function λ .

For the proof of this theorem, we note that from positive or negative definiteness of the
Riemannian curvature operator R of (M,g) we can conclude that the sectional curvature of
(M,g) is positive or negative definite, respectively. In dimension 3, the converse is true.

3.2. Condition for non-existence of Ricci-semisymmetric manifolds. In particular, if
T = Ric for the Ricci tensor Ric of (M,g) then (M,g) is called a Ricci-semisymmetric
manifold which was defined (see Mikeš 1980; Mirzoyan 1992) by the following condition
R(X ,Y )◦Ric = 0. Remark here, that though R(X ,Y )◦R = 0 implies R(X ,Y )◦Ric = 0, but
the converse is not true, in general. The main structure theorem of the Mirzoyan (1992)
paper says that a smooth Riemannian manifold is Ricci-semisymmetric if and only if it
is locally a product of two-dimensional Riemannian manifolds, Einstein spaces and semi-
Einstein spaces. Some results by Z.I. Szabó are used in the proof of this theorem. On the
other hand, we have following corollary.

Corollary 1. Let (M,g) be a Ricci-semisymmetric n-dimensional (n ≥ 3) Riemannian
manifold and {e1, . . . ,en} be an orthonormal basis at an arbitrary point x ∈ M which
consists of the Ricci principal directions such that Ric(ei,e j) = λiδi j for the eigenvalue
λi of Ric and the Kronecker delta δi j. If the sectional curvature sec(ei ∧ e j) ̸= 0 then
λi = λ j. In particular, a Ricci-semi-symmetric Riemannian manifold (M,g) with nonzero
sectional curvatures at each point of (M,g) is an Einstein manifold (i.e. Ric = const · g)
and, moreover, in dimension 3 is a Riemannian manifold of constant curvature.

Geometrical interpretation of the Ricci principal directions has been present in the
monograph by Eisenhart (1997).

4. T -birecurrent Riemannian manifold

Lichnerowicz has defined (see Mirzoyan 1992) a recurrent of second order (or briefly
a birecurrent) Riemannian manifold (M,g) by the equation ∇2R = a⊗R, where R is the
Riemannian curvature tensor of (M,g) and a is a covariant tensor field of order 2. He proved
that if a birecurrent (M,g) is compact and the scalar curvature does nowhere vanish it is
recurrent in the ordinary sense: ∇R = b⊗R where b is a 1-form on (M,g). Wakakuwa in
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Vrănceanu (1985) proved the same result for non-compact irreducible Riemannian manifold
(M,g) with dimension n ≥ 3.

There are several generalizations of the concept of birecurrent Riemannian manifold.
For example (see Ewert-Krzemieniewski 1991; Nakagawa 1966), a tensor field T of type
(p,q) is called a birecurrent tensor if it satisfies the equation

∇
2T = a⊗T. (3)

In addition Mirzoyan (1992) has proved that for any covariant birecurrent tensor T
its associated tensor field a is a symmetric tensor field. Therefore using the standard
commutation formulas (Ricci identities)

(∇2T )(X ,Y )− (∇2T )(Y,X) = R(X ,Y )◦T

we obtain from (3) the equation (2). Hence if a Riemannian manifold (M,g) admits a
birecurrent tensor T then (M,g) is a T -semi-symmetric manifold. Therefore, from the
Lemma 2 we obtain automatically the following corollary.

Corollary 2. Let T be a birecurrent covariant symmetric tensor field of the type (2,0) on
an n-dimensional (n ≥ 2) Riemannian manifold (M,g) and {e1, . . . ,en} be an orthonormal
basis at an arbitrary point x ∈ M which consists of eigenvectors of T such that T (ei,e j) =
λiδi j for the eigenvalue λi of T and the Kronecker delta δi j. If the sectional curvature
sec(ei ∧ e j) ̸= 0 then λi = λ j. In particular, if (M,g) has nonzero sectional curvatures at
each point of (M,g), then T = λ ·g for some smooth scalar function λ .

On the other hand, from the Theorem 1 we obtain another corollary.

Corollary 3. Let T be a birecurrent covariant tensor field of the type (2,0) on an n-
dimensional (n ≥ 3) Riemannian manifold (M,g) with positive (negative) Riemannian
curvature operator R : Λ2M → Λ2M, then T = λ ·g for some smooth scalar function λ .

5. Proof of the results

Proof of Lemma 1. Let {x1,x2, . . . ,xn} be a local coordinate system on the chart (U,φ).
We denote by g = (gi j), R = (Rh

i jk), Ric = (Ri j := Rk
ik j) and T = (Ti1i2···iq), respectively, the

metric, the curvature, the Ricci tensors and a covariant tensor field T of type (q,0) with
respect to the local coordinate system {x1,x2, . . . ,xn}. Then the formula (2) becomes

Tli2···iq Rl
i1 jk +Ti1li3···iqRl

i2 jk + · · ·+Ti1i2···iq−1lRl
iq jk = 0 (4)

by local expression for the covariant tensor field T and the curvature tensor R.
Let T be a skew-symmetric tensor field T ∈ Λ2M then from (4) we obtain

TlkRl
ist +TilRl

kst = 0. (5)

If we transvect (5) with gktT is we get (see Yano and Bochner 1953, Sec. 4 of Chapter III;
Yano 1970, p. 70)

F2(T ) := Ri jT i
kT jk − 1

2
Ri jklT i jT kl = 0. (6)

where F2: Λ2M ⊗Λ2M → R is the well known (see Besse 1987, p. 53; Petersen 2006,
p. 211) quadratic form from the classic formula of Bochner-Weitzenböck g(∆T,T ) =
g(∇∗∇T,T )+Fq(T,T ) for q = 2. Here ∆ is the Hodge Laplacian and ∇∗∇ is the rough
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(Bochner) Laplacian. Moreover, (6) is equals to the following equations (Petersen 2006,
pp. 220, 221)

∑
α

rα∥[θα ,T ]∥2 = 0 (7)

where rα are the eigenvalues and θα the duals of the eigenvectors of the standard symmetric
Riemannian curvature operator R: Λ2M → Λ2M given by the identity (Sinyukov 1979,
p. 36)

g(R(X ∧Y ),V ∧W ) = R(X ∧Y,V ∧W ) = R(X ,Y,V,W )

for arbitrary vector fields X ,Y,V and W . Furthermore, we say that (M,g) has positive
(negative) Riemannian curvature operator if all eigenvalues of R are positive (negative).

Next we suppose that (M,g) has the positive (negative) Riemannian curvature operator,
then rα > 0 (rα < 0) and the formula (7) implies that [θα ,T ] = 0 for all α . In this case T
must vanish (see Petersen 2006, p. 221). This completes the proof of Lemma 1.

Proof of Lemma 2. The formula (2) becomes

TlkRl
ist +TilRl

kst = 0. (8)

by local expression for the symmetric tensor field T of type (2,0) and the curvature tensor
R. Let {e1, . . . ,en} be an orthogonal basis in TxM at an arbitrary point x ∈ M such that
T (ei,e j) = λi δi j for the Kronecker delta δi j. Then we can rewrite the identities (8) as

(λi −λ j) · sec(ei ∧ e j) = 0 (9)

where sec(ei ∧ e j) = g(R(ei ∧ e j),ei ∧ e j) is called a sectional curvature of two-plane (see
Petersen 2006, p. 36). If we suppose that sec(ei ∧ e j) ̸= 0 then from (9) we obtain λi = λ j.
In particular, if sectional curvatures of all two-planes π ⊂ TxM at each point x ∈ M are not
zero then from (9) we obtain λ1 = · · ·= λn = λ . Hence Lemma 2 is proved.

Proof of Corollary 1. The Corollary 1 follows from Lemma 2 automatically. If n = 3,
then (M,g) is Einstein if and only if it has constant sectional curvature too (see Besse 1987,
p. 44).

Remark. We note that if n = 2, then at each point x in M, we have Ric = 1
2 s ·g for the

scalar curvature s, and the condition R(X ,Y )◦Ric = 0 is always satisfied.

References

Besse, A. L. (1987). Einstein Manifolds. Springer.
Boeckx, E., Kowalski, O., and Vanhecke, L. (1996). Riemannian Manifolds of Conullity Two. World

Scientific Pub Co Inc.
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